Source code for racetrack.model

# -*- coding:utf-8 -*-
#
# Copyright (C) 2020-2021, Saarland University
# Copyright (C) 2020-2021, Maximilian Köhl <koehl@cs.uni-saarland.de>
# Copyright (C) 2020-2021, Michaela Klauck <klauck@cs.uni-saarland.de>

from __future__ import annotations

import dataclasses as d
import typing as t

import enum
import itertools
import math
import re


from momba import model
from momba.model import expressions, types
from momba.moml import expr, prop


[docs] class TankType(enum.Enum): """ An enumeration of different *tank types*. The actual tank size is calculate based on the size of the track and *capacity factor*. Attributes ---------- capacity_factor: The capacity factor associated with the tank size. """ SMALL = 0.5 """ A small tank. """ MEDIUM = 0.75 """ A medium-sized tank. """ LARGE = 1 """ A large tank. """ capacity_factor: float def __init__(self, capacity_factor: float) -> None: self.capacity_factor = capacity_factor
class AccelerationModel(t.Protocol): def __call__(self, acceleration: model.Expression) -> model.Expression: pass
[docs] class Underground(enum.Enum): """ An enumeration of different *undergrounds*. Undergrounds introduce probabilistic noise modeling slippery road conditions. Attributes ---------- acceleration_probability: An expression for the probability that the acceleration succeeds. acceleration_model: A function for computing the *abnormal* acceleration. """ TARMAC = expr("9 / 10"), lambda a: a """ A very solid non-slippery underground introducing no noise. """ SLIPPERY_TARMAC = expr("9 / 10"), lambda a: expr("0") """ A solid but somewhat slippery underground. """ SAND = ( expr("5 / 10"), lambda a: expr("$a > 0 ? $a - 1 : ($a < 0 ? $a + 1 : 0)", a=a), ) """ A sandy underground introducing some noise, be cautious! """ ICE = expr("3 / 10"), lambda a: expr("0") """ A very slippy underground. """ acceleration_probability: model.Expression acceleration_model: AccelerationModel def __init__( self, acceleration_probability: model.Expression, acceleration_model: AccelerationModel, ) -> None: self.acceleration_probability = acceleration_probability self.acceleration_model = acceleration_model
[docs] @d.dataclass(frozen=True, order=True) class Coordinate: """ Represents a coordinate on the track. """ x: int """ The :math:`x` coordinate. """ y: int """ The :math:`y` coordinate. """
[docs] class CellType(enum.Enum): """ An enumeration of *cell types*. """ BLANK = ".", 0 """ A *blank cell* where one can drive. """ BLOCKED = "x", 1 """ A cell *blocked* by an obstacle. """ START = "s", 2 """ A start cell. """ GOAL = "g", 3 """ A goal cell. """ symbol: str number: int def __init__(self, symbol: str, number: int) -> None: self.symbol = symbol self.number = number
class Direction(enum.Enum): NORTH = (0, -1) NORTH_EAST = (1, -1) EAST = (1, 0) SOUTH_EAST = (1, 1) SOUTH = (0, 1) SOUTH_WEST = (-1, 1) WEST = (-1, 0) NORTH_WEST = (-1, -1) delta: Coordinate def __init__(self, delta_x: int, delta_y: int) -> None: self.delta = Coordinate(delta_x, delta_y) @property def distance_variable(self) -> str: return f"dist_{self.name.lower()}"
[docs] @d.dataclass(frozen=True) class Track: """ Represents a *track*. Attributes ---------- width: The width of the track. height: The height of the track. blank_cells: The set of blank cells. blocked_cells: The set of blocked cells. start_cells: The set of start cells. goal_cells: The set of goal cells. """ width: int height: int blank_cells: t.FrozenSet[Coordinate] blocked_cells: t.FrozenSet[Coordinate] start_cells: t.FrozenSet[Coordinate] goal_cells: t.FrozenSet[Coordinate]
[docs] def get_cell_type(self, cell: Coordinate) -> CellType: """ Retrives the type of the given *cell*. """ if cell in self.blank_cells: return CellType.BLANK elif cell in self.blocked_cells: return CellType.BLOCKED elif cell in self.start_cells: return CellType.START else: assert cell in self.goal_cells return CellType.GOAL
@property def textual_description(self) -> str: """ Converts the track into its textual description. """ lines = [f"dim: {self.width} {self.height}"] for y in range(self.height): lines.append( "".join( self.get_cell_type(Coordinate(x, y)).value for x in range(self.width) ) ) return "\n".join(lines)
[docs] @classmethod def from_source(cls, source: str) -> Track: """ Converts a textual specification of a track into a :class:`Track`. """ firstline, _, remainder = source.partition("\n") dimension = re.match(r"dim: (?P<height>\d+) (?P<width>\d+)", firstline) assert dimension is not None, "invalid format: dimension missing" width, height = int(dimension["width"]), int(dimension["height"]) track = [ list(line.strip()) for line in remainder.splitlines(keepends=False) if line.strip() ] assert ( len(track) == height ), "given track height does not match actual track height" assert all( len(row) == width for row in track ), "given track width does not match actual track width" def get_coordinates(expected_cell_char: str) -> t.FrozenSet[Coordinate]: return frozenset( Coordinate(x, y) for y, row in enumerate(track) for x, cell_char in enumerate(row) if cell_char == expected_cell_char ) blank_cells = get_coordinates(".") blocked_cells = get_coordinates("x") start_cells = get_coordinates("s") goal_cells = get_coordinates("g") assert len(start_cells) > 0, "no start cell specified" assert len(goal_cells) > 0, "no goal cell specified" return cls(width, height, blank_cells, blocked_cells, start_cells, goal_cells)
class FuelModel(t.Protocol): def __call__( self, scenario: Scenario, dx: model.Expression, dy: model.Expression ) -> model.Expression: pass def fuel_model_linear( scenario: Scenario, dx: model.Expression, dy: model.Expression ) -> model.Expression: return expr("abs($dx) + abs($dy)", dx=dx, dy=dy) def fuel_model_quadratic( scenario: Scenario, dx: model.Expression, dy: model.Expression ) -> model.Expression: return expr("$linear ** 2", linear=fuel_model_linear(scenario, dx, dy)) def fuel_model_regular( scenario: Scenario, dx: model.Expression, dy: model.Expression ) -> model.Expression: return expr( "(1 + $max_acceleration) + $quadratic", max_acceleration=scenario.max_acceleration, quadratic=fuel_model_quadratic(scenario, dx, dy), )
[docs] @d.dataclass(frozen=True) class Scenario: """ A scenario description comprising a track, start cell, tank type, underground, maximal speed and acceleration values, and a fuel model. """ track: Track start_cell: t.Optional[Coordinate] tank_type: TankType = TankType.LARGE underground: Underground = Underground.TARMAC max_speed: t.Optional[int] = None max_acceleration: int = 1 fuel_model: t.Optional[FuelModel] = fuel_model_regular compute_distances: bool = False random_start: bool = False @property def tank_size(self) -> int: return math.floor( self.tank_type.capacity_factor * 3 * len(self.track.blank_cells) ) @property def possible_accelerations(self) -> t.Iterable[int]: return tuple(range(-self.max_acceleration, self.max_acceleration + 1)) def compute_consumption( self, dx: model.Expression, dy: model.Expression ) -> model.Expression: assert self.fuel_model is not None, "no fuel model has been defined" return self.fuel_model(self, dx, dy)
def construct_model(scenario: Scenario) -> model.Network: """ Constructs an MDP network from the provided scenario description. """ ctx = model.Context(model.ModelType.MDP) network = ctx.create_network(name="Featured Racetrack") track = scenario.track ctx.global_scope.declare_constant("WIDTH", types.INT, value=track.width) ctx.global_scope.declare_constant("HEIGHT", types.INT, value=track.height) speed_bound = ( max(scenario.track.width, scenario.track.height) + scenario.max_acceleration ) ctx.global_scope.declare_variable( "car_dx", types.INT.bound(-speed_bound, speed_bound), initial_value=0, ) ctx.global_scope.declare_variable( "car_dy", types.INT.bound(-speed_bound, speed_bound), initial_value=0, ) first_start_cell = next(iter(scenario.track.start_cells)) ctx.global_scope.declare_variable( "car_x", types.INT.bound(-1, track.width), initial_value=scenario.start_cell.x if scenario.start_cell is not None else first_start_cell.x, ) ctx.global_scope.declare_variable( "car_y", types.INT.bound(-1, track.height), initial_value=scenario.start_cell.y if scenario.start_cell is not None else first_start_cell.y, ) ctx.global_scope.declare_variable( "map", typ=types.array_of(types.array_of(types.INT.bound(0, 3))), is_transient=True, initial_value=model.expressions.ArrayValue( tuple( model.expressions.ArrayValue( tuple( model.ensure_expr(track.get_cell_type(Coordinate(x, y)).number) for x in range(track.width) ) ) for y in range(track.height) ) ), ) if scenario.compute_distances: ctx.global_scope.declare_variable( "goal_dist_x", typ=types.INT.bound(-track.width - 1, track.width + 1), initial_value=0, ) ctx.global_scope.declare_variable( "goal_dist_y", typ=types.INT.bound(-track.height - 1, track.height + 1), initial_value=0, ) ctx.global_scope.declare_variable( "goal_dist", typ=types.INT.bound(0, track.width + track.height + 2), initial_value=0, ) for direction in Direction: ctx.global_scope.declare_variable( direction.distance_variable, typ=types.INT.bound( 0, math.floor(math.sqrt(track.width**2 + track.height**2)) + 1 ), initial_value=0, ) if scenario.fuel_model is not None: ctx.global_scope.declare_variable( "fuel", types.INT.bound(0, scenario.tank_size), initial_value=scenario.tank_size, ) accelerate = ctx.create_action_type("accelerate").create_pattern() # The environment is about to move the car. move_tick = ctx.create_action_type("move_tick").create_pattern() # The environment is about to check the state of the car. check_tick = ctx.create_action_type("check_tick").create_pattern() # The environment is about to delegate the decision back to the car. delegate = ctx.create_action_type("delegate").create_pattern() def is_off_track( car_x: model.Expression = expr("car_x"), car_y: model.Expression = expr("car_y"), ): return expr( "$car_x >= WIDTH or $car_x < 0 or $car_y >= HEIGHT or $car_y < 0", car_x=car_x, car_y=car_y, ) def is_at_cell( typ: CellType, car_x: model.Expression = expr("car_x"), car_y: model.Expression = expr("car_y"), ): return model.expressions.ite( is_off_track(car_x, car_y), model.ensure_expr(typ is CellType.BLOCKED), expr( f"$cell_number == {typ.number}", cell_number=model.expressions.ArrayAccess( model.expressions.ArrayAccess(expr("map"), car_y), car_x ), ), ) def is_at_goal( car_x: model.Expression = expr("car_x"), car_y: model.Expression = expr("car_y"), ) -> model.Expression: return is_at_cell(CellType.GOAL, car_x, car_y) def is_at_blocked( car_x: model.Expression = expr("car_x"), car_y: model.Expression = expr("car_y"), ) -> model.Expression: return is_at_cell(CellType.BLOCKED, car_x, car_y) # In case the fuel is empty before reaching the goal, the model goes # into a dead state without transitions. Hence, this property also # covers the consumption of fuel. ctx.define_property( "goalProbability", prop("min({ Pmax(F($is_at_goal)) | initial })", is_at_goal=is_at_goal()), ) def construct_car_automaton() -> model.Automaton: automaton = ctx.create_automaton(name="car") initial = automaton.create_location(initial=True) def compute_speed( current: model.Expression, acceleration: expressions.ValueOrExpression ) -> model.Expression: if scenario.max_speed is None: return expr( "$current + $acceleration", current=current, acceleration=acceleration, ) else: return expr( "max(min($current + $acceleration, $max_speed), -$max_speed)", current=current, acceleration=acceleration, max_speed=scenario.max_speed, ) for ax, ay in itertools.product(scenario.possible_accelerations, repeat=2): automaton.create_edge( source=initial, destinations=[ model.create_destination( location=initial, assignments={ "car_dx": compute_speed(expr("car_dx"), ax), "car_dy": compute_speed(expr("car_dy"), ay), }, probability=scenario.underground.acceleration_probability, ), model.create_destination( location=initial, assignments={ "car_dx": compute_speed( expr("car_dx"), scenario.underground.acceleration_model(ax), ), "car_dy": compute_speed( expr("car_dy"), scenario.underground.acceleration_model(ay), ), }, probability=expr( "1 - $p", p=scenario.underground.acceleration_probability, ), ), ], action_pattern=accelerate, annotation={"ax": ax, "ay": ay}, ) return automaton def construct_tank_automaton() -> model.Automaton: automaton = ctx.create_automaton(name="tank") initial = automaton.create_location(initial=True) consumption = scenario.compute_consumption(expr("car_dx"), expr("car_dy")) automaton.create_edge( source=initial, destinations=[ model.create_destination( initial, assignments={ "fuel": expr( "fuel - floor($consumption)", consumption=consumption ) }, ) ], action_pattern=check_tick, guard=expr( "fuel >= $consumption", consumption=consumption, ), ) return automaton def construct_environment_automaton() -> model.Automaton: automaton = ctx.create_automaton(name="environment") automaton.scope.declare_variable( "start_x", typ=types.INT.bound(-1, track.width), initial_value=0 ) automaton.scope.declare_variable( "start_y", typ=types.INT.bound(-1, track.height), initial_value=0 ) automaton.scope.declare_variable( "counter", typ=types.INT.bound(0, max(track.width, track.height) + 1), initial_value=0, ) initial = automaton.create_location("initial", initial=True) position_set = automaton.create_location("position_set") wait_for_car = automaton.create_location("wait_for_car") move_car = automaton.create_location("move_car") env_check = automaton.create_location("env_check") move_ticks = expr("max(abs(car_dx), abs(car_dy))") if scenario.start_cell is None: options = set(track.start_cells) if scenario.random_start: options.update(track.blank_cells) automaton.create_edge( initial, destinations=[ model.create_destination( position_set, assignments={ "car_x": model.ensure_expr(start_cell.x), "car_y": model.ensure_expr(start_cell.y), }, probability=expr(f"1 / {len(options)}"), ) for start_cell in options ], ) else: automaton.create_edge( initial, destinations=[ model.create_destination( position_set, assignments={ "car_x": model.ensure_expr(scenario.start_cell.x), "car_y": model.ensure_expr(scenario.start_cell.y), }, ) ], ) automaton.create_edge( source=position_set, destinations=[model.create_destination(wait_for_car)], action_pattern=delegate, ) # Wait for the decision of the car. automaton.create_edge( source=wait_for_car, destinations=[ model.create_destination( location=move_car, assignments={ "counter": expr("0"), "start_x": expr("car_x"), "start_y": expr("car_y"), }, ) ], action_pattern=accelerate, ) # Move the car or delegate the decision back to the car. automaton.create_edge( source=move_car, destinations=[ model.create_destination( env_check, assignments={ "counter": expr("counter + 1"), "car_x": expr( "start_x + floor((counter + 1) * (car_dx / $move_ticks) + 0.5)", move_ticks=move_ticks, ), "car_y": expr( "start_y + floor((counter + 1) * (car_dy / $move_ticks) + 0.5)", move_ticks=move_ticks, ), }, ) ], guard=expr("counter < $move_ticks", move_ticks=move_ticks), action_pattern=move_tick, ) automaton.create_edge( source=move_car, destinations=[model.create_destination(wait_for_car)], guard=expr("counter >= $move_ticks", move_ticks=move_ticks), action_pattern=delegate, ) # Checker whether we should terminate or continue moving the car. should_terminate = expr( "$is_off_track or $is_at_goal or $is_at_blocked", is_off_track=is_off_track(), is_at_goal=is_at_goal(), is_at_blocked=is_at_blocked(), ) automaton.create_edge( source=env_check, destinations=[model.create_destination(move_car)], guard=expr("not $should_terminate", should_terminate=should_terminate), action_pattern=check_tick, ) return automaton def construct_distance_automaton() -> model.Automaton: automaton = ctx.create_automaton(name="Distance") compute = automaton.create_location("compute") done = automaton.create_location("done") wait = automaton.create_location("wait", initial=True) def get_goal_dist_x(goal: Coordinate) -> model.Expression: return expr(f"{goal.x} - car_x") def get_goal_dist_y(goal: Coordinate) -> model.Expression: return expr(f"{goal.y} - car_y") def get_goal_dist(goal: Coordinate) -> model.Expression: return expr( "abs($dist_x) + abs($dist_y)", dist_x=get_goal_dist_x(goal), dist_y=get_goal_dist_y(goal), ) automaton.create_edge( done, destinations=[model.create_destination(wait)], action_pattern=accelerate, ) assignments = { direction.distance_variable: model.ensure_expr(0) for direction in Direction } assignments["goal_dist"] = model.ensure_expr(track.width + track.height + 2) for goal in track.goal_cells: assignments["goal_dist"] = model.expressions.minimum( get_goal_dist(goal), assignments["goal_dist"] ) automaton.create_edge( wait, destinations=[ model.create_destination( compute, assignments=assignments, ) ], action_pattern=delegate, ) def get_current_x(direction: Direction): return expr( "car_x + $factor * $distance", factor=direction.delta.x, distance=expr(direction.distance_variable), ) def get_current_y(direction: Direction): return expr( "car_y + $factor * $distance", factor=direction.delta.y, distance=expr(direction.distance_variable), ) def is_done(direction: Direction): return model.expressions.logic_or( is_at_blocked(get_current_x(direction), get_current_y(direction)), is_off_track(get_current_x(direction), get_current_y(direction)), ) is_done_all = model.expressions.logic_all( *(is_done(direction) for direction in Direction) ) assignments = {"goal_dist_x": track.width + 1, "goal_dist_y": track.height + 1} for goal in track.goal_cells: do_apply = expr( "goal_dist == $to_this_goal", to_this_goal=get_goal_dist(goal) ) assignments["goal_dist_x"] = model.expressions.ite( do_apply, get_goal_dist_x(goal), assignments["goal_dist_x"] ) assignments["goal_dist_y"] = model.expressions.ite( do_apply, get_goal_dist_y(goal), assignments["goal_dist_y"] ) automaton.create_edge( compute, destinations=[model.create_destination(done, assignments=assignments)], guard=is_done_all, ) automaton.create_edge( compute, destinations=[ model.create_destination( compute, assignments={ direction.distance_variable: expr( f"{direction.distance_variable} + $delta", delta=model.expressions.ite(is_done(direction), 0, 1), ) for direction in Direction }, ) ], guard=expr("not $is_done", is_done=is_done_all), ) return automaton car = construct_car_automaton().create_instance() environment = construct_environment_automaton().create_instance() accelerate_vector = {car: accelerate, environment: accelerate} check_tick_vector = {environment: check_tick} delegate_vector = {environment: delegate} if scenario.fuel_model: tank = construct_tank_automaton().create_instance() check_tick_vector[tank] = check_tick if scenario.compute_distances: instance = construct_distance_automaton().create_instance() delegate_vector[instance] = delegate accelerate_vector[instance] = accelerate network.create_link(accelerate_vector, result=accelerate) network.create_link({environment: move_tick}, result=move_tick) network.create_link(check_tick_vector, result=check_tick) network.create_link(delegate_vector, result=delegate) return network def generate_scenarios( track: Track, speed_bound: int, acceleration_bound: int ) -> t.Iterator[Scenario]: for start_cell in track.start_cells: for max_speed in range(1, speed_bound + 1): for max_acceleration in range(1, acceleration_bound + 1): for underground in Underground: for tank_type in TankType: yield Scenario( track, start_cell, tank_type, underground, max_speed, max_acceleration, compute_distances=True, )